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CREEP RUPTURE
FOLKE K. G. ODQvIST

Royal Institute of Technology, Sweden

INTRODUCTION

Enoch Thu lin, Swedish pioneer in aeronautics, was killed in an airplane
accident on a routine flight in May, 1919, now more than 43 years ago. In those
days this was no unconunon fate for a pilot, particularly so a test pilot. Figure 1

shows Dr. Thu lin, in whose memory this lecture is being delivered. IIe lived to
be 38 years of age. Besides being his own test pilot, he was a pioneer in scientific
aeronautics, a gifted designer of planes and motors, and the founder of an
airplane industry with well over 800 employees.

The sources of knowledge about Thu lin's activities are rather scanty. My own
memories of him do not go beyond those of the man in the street. You must,
remember that at the time of his death I was ab(uit to finish my freshman year
as a mechanical engineering student at the Royal Institute of Technology.
Thulin's intimate friend and collaborator, Dr. Ivar Malmer, gave his first lectures
in aeronautical engineering here a few years later, 19 22 or so. But I var Mahner,

too, has been dead for many years and I have been compelled to scan written
sources in order to obtain any information at all about the Thu lin airplane
'ndustry at Landskrona in southern Sweden.

Thu lin made it his goal to increase flight safety—an urgent task indeed in his
time. Ile worked along several lines of thought. He had an aero(lynamic labora-
tory modeled on the Eiffel plant in France, but with several original contrilni-

tions of his own. An original inventor and designer of a rotating internal
combustion engine. Thu lin had realized that the dependability of his motor
was, above all, a question of knowledge about the materials used. Figure
shows his materials laboratory) It was surprisingly well outfitted; the balance-
type testing machine, the Brinell hardness tester, the Charpy pendulum, and
the rotating-beam fatigue machine were exactly the same as those of the Royal
Institute when I took over the materials laboratory there in 1936. The only

addition there consisted of eight creep testing machines, for in the meantime
the phenomenon of creep had made its appearance among the chores to be
attended to by designers and material specialists in mechanical engineering and
aeronautics.
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This brings us back to the topic of today's lecture. The material problem of

contemporary aeronautics and space flight is, of course, much more varied than

it was in 1919 and shows aspects entirely unknown at that time. This is due to

the fact that today we fly so much faster and so much higher than we did 50

years ago. Aerodynamic heating was then negligible. Also, today the working

temperatures of motors and jet engines are far above those of Thu lin's day.

Out of the new problems, I have picked that of creep rupture for reasons of

my own. I shall try to show that the essential features of this phenomenon could

be derived from a few fundamental properties inherent to most structural metals

in a certain temperature range. Rupture stress and elongation as a function of

strain rate will be proved to have a continuous transition from the lowest speed

in creep to the highest speeds encountered, for example, in shocks. I shall start

with a short review of some physical facts.

May these introductory words serve as a link between Enoch Thu lin's time

and the present.

PHYSICAL BACKGROUND

Metal physicists teach us today that fracture of metal structures nucleates

from local plastic deformation. This is true for all types of fracture---ductile,

brittle, or fatigue. In all these cases we have to take into consideration plastic

deformation prior to the ultimate formation of a crack. Such deformation may

be localized to a very small part of the crystal grains or may be spread out over

the entire structure. In either case, deformation may be understood only by

taking into account the motion of crystal defects known as dislocations.

The simplest case of a dislocation may be seen in Fig. 3; dislocations in this

form were introduced by Sir Geoffrey Taylor in 1934. In the middle of the

structure a vacancy is seen moving horizontally from left to right under the

action of a shear stress much lower than would have been needed if the whole

upper part of the structure had moved one atomic spacing simultaneously.

The notion of dislocations was introduced as a hypothesis in the 1930's by

several scientists independently in order to explain the fact that crystals do

deform plastically at a much lower stress than would be required if the crystal

lattice were perfect. Today dislocations of the form just indicated, as well as of

many more complicated ones, have been made visible and have even been filmed.

They are to be considered a physical reality as much as the molecules of a gas.

In general, it is necessary to use special artifices or the high magnifications
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obtainable only with an electron microscope in order to reveal this strange
material behavior (see, for example . Fig. 4, taken from Ref. 2).

A further study of metal plasticity in relation to the motion of dislocations
shows that a great variety of mechanisms is possible. Each material shows its
individual characteristics. A day may come when plastic behavior of structural
metals can be predicted if their atomic structure is known. At present, I regret
to say, the designer and computing engineer have little help from dislocation
theory as far as calculation methods are concerned. At the same time, it is
strange to note that the general global behavior of structural metals with regard
to deformation and strength is very much the same for all. Certain simple
fundamental "laws" may be stated. It is true that materials may behave
differently with respect to ductility and brittleness. But still these differences
are relative rather than absolute.

Out of the multiplicity of observations made on metals under stress I shall
single out three,  viz.,

the law of plastic deformation with strain hardening
the law of viscous flow under constant stress in the so-called secondary
stage of creep

(e)  the law of deterioration of the material with time under action of stress.
These three laws pertain to the phenomenological behavior of the material.

Their explanation from the point of view of dislocation theory may be very
intricate indeed and show individual characteristics for different materials.
Their utility may be proved only by their simplicity and of course by
experience.

Fig.4. Curvilinear dislocations found in specimen deformed at a MOAV rate at about
1000°C.
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PHENOMENOLOGICAL APPROACH

In what follows we shall consider nonrecoverable plastic deformation only.
We shall also neglect the accompanying elastic deformations.

PLASTIC DEFORMATION WITH STRAIN-HARDENING

The plastic strain E under the action of a stress a may be expressed in the form

E = —

ac r o) n,
(1)

where ao and no are material constants. Equations of this form for the description
of the results of ordinary tension tests were proposed already in the nineteenth
century—e.g., by C. Bach in Germany and somewhat later by P. Ludwik.3
More recent data to support Eq. (1) have been collected by J. D. Lubahn and
R. P. Felgar."I'he plastic strain as computed from Eq. (1) neglects velocity
effects and is by definition unrecoverable. If unloading takes place from a stress
value a = a„, then E has to be kept constant until a again exceeds the value a„,
cf. Fig. 5.

VISCOUS FLOW UNDER CONSTANT STRESS

Above a certain critical temperature each metal, when loaded under constant
stress a, shows plastic deformation—so-called creep with strain E, increasing
progressively with time t as seen in Fig. 6 for aluminum, which is reproduced
from J. Dorn.' The terminology "primary,- "secondary- and "tertiary- stages
of creep, shown in the Fig. 6, corresponds to decrease, constancy, and again
increase of the strain rate de/dt, and is due to the work of E. N. da C. Andrade
early in this century. The strain rate during the secondary stage is strongly
depending on the stress u and also on the prevailing temperature as indicated

Fig. 5.
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in Fig. 6. The stress dependence of ch/dt was investigated in the 19'20's very
completely by F. N. Norton6 and presented in the form of a power law

dt
dt

(2)

which we shall, for shortness, call Norton's law. The quantities o-e. and n are
material constants, depending on temperature. Many subsequent investigators
have utilized equations of the type M. It has been criticized, it is true, but
recent investigations have established its validity, at least in the lower stress
range. For moderate requirements and global considerations such as those of
the present paper, it may be used as an interpolation formula over a wide range
of stress.

(C) DETERIORATION WITH TIME UNDER STRESS

In the so-called tertiary stage of creep the material is known to become
deteriorated. Voids are being formed due to coalescence of dislocations. Figure 7,
reproduced from Ref. 7, shows the fracture appearance and also the influence
of the ambient atmosphere. Considering a test piece in uniaxial tension under
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Fig. 7. (a)  Vacuum-melted 80 nickel-IO chromium alloy containing 1.33';';., silicon teste(l
at 1500° F. Rupture life, 870 hr; elongation, 45t7(. (b)  Air-melted alloy also tested at

1500° F, 5,000 psi. Rupture life, 3i4 hr; elongation,

load P. only part r of the cross section .1 will support the load and we may
define a damage factor

I) = (.1 —

This means that the real stress ar on the supporting area will be larger than
the mean stress a = P/A.  It is reasonable to assume a relationship of the form

dD(  g \
= f(u') f \1 — Di (3)

for the increase of the damage 1) with time/. The stress a may be applied at the
time  t = O. when the material is in a virgin state and we have D = O. When
the damage is complete we have 1) = 1. Integration of the differential Eq. (3)
will enable us to compute the time  tR  to rupture. In order to achieve this we
must know the function f(x) of the variable  .r  introduced in Eq. (3). If we add
the assumption that the differential Eq. (3) be separable, this yields the simple
form

f(x) = Cx"  (4)

with  C  and v material constants. Inserting Eq. (4) in Eq. (3) and integrating,
we imnlediately obtain

IR 1 

f ardt = f (1 — DYWD —

v + 1 (5)

The condition (5) was introduced by L. M. Kachanov8 and utilized also for
time-dependent stress a. As shown by J. Hult and the present author,' Kacha-
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nov's theory is equivalent to the earlier "linear cumulative creep damage" law
due to E. L. Robinson." If the stress a = ak = constant, we obtain from Eq. (5)

1 

C Uk tk

V + 1

and thus we may write Eq. (5) in the form

el? (

fO

0.
dt = tk

The material constants appearing in Eqs. (1), (2) and (7) may be given a form,
more familiar to engineers. In fact, they are closely connected with well-known
material properties encountered in the engineering literature. Thus we may
write

(ao..02)  
(Tor" =

2 • 10-3

= a:7 • 107

tk Œk' = (a,n(5))'  • 105

where a0.2 is the "proof stress" for 0.2 percent permanent set, a,7 the "limiting

creep stress" causing 1 percent creep strain in 105 hours and a,B5 the stress

causing creep rupture in 105 hours. The constants no, n and v will be shown in
the sequel to fulfill certain fundamental relations.

The three laws (A), (B), and (C) may be combined in various ways.
We may, for example, calculate the total creep strain for time-dependent

stress a in combining Eqs. (1) and (2) and neglect, as before, strains of the order
of elastic strains. We thus obtain

ci! = A ( 2-)no (o-
dt dt ao

Here the irreversibility condition requires that the first term on the right side
should be omitted if unloading takes place and then be left out of consideration
until the stress reaches again the absolute value a from which unloading took

place. Equation (11) was proposed by the present author in 1952." It has been
further developed in a series of papers." It is capable of representing the data

of ordinary creep curves at constant stress in the form




=
(0)

E 0
 +

vt

where

(0) a
E =

ao

)no
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V =  (14)

i.e., Eq. (11) may be expected to give a realistic representation of creep phe-



nomena but for the first stages of primary creep in the shaded region of Fig. 8.

GENERALIZATION TO MULTIAXIAL STRESS

So far we have considered uniaxial stress only. The designer and calculating
engineer needs formulae for multiaxial stresses here as in the classical theory of
elasticity. Before entering our main subject we shall first generalize the previous
considerations to multiaxial states of stress. Equations (1), (e), and (7) may be
generalized to general states of combined stress, if we take account of certain
additional facts supplied by experience. These may be in the simplest case

Isotropy

Incompressibility

Independence of hydrostatic pressure

The state of stress may be represented by the principal stresses al, 0-2, and 03.

The corresponding principal strains may be el, f2, and e3. The generalization will
be stated for Eq. (11) as this equation comprises Eqs. (1) and (2) as special cases.

Isotropy requires expressions for the creep rates

dE1 dE2 de3
vm  V2=r= V3 = —7

as symmetric functions of the quantities al, 02. 03.

Incompressibility may be expressed in different ways, depending upon the
geometry of the problem under consideration. In the case of small strain rates
it is expressed simply

VI + V2 + V3 = 0 (15)

vt

E(°)

Fig. 8.
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In order to make the creep rates ri independent of hydrostatic pressure we
prefer to use the stress deviation si instead of the stress a riz.,

0-1 02 4-03 

= o-i — i = 1,2,3 (16)

Then we obviously have

SI + S2 + 8 3 = (17)

Further we introduce 0,, the "effective stress,- as a symmetric function of the
deviation components si defined by

23 ( 2 , 2 2)
Cre  = -2 si S2 + S3

= 0-12 022 ± 032 — 0102 — 0-203 — 0-301 (18)

Obviously a, will itself be independent of a superimposed hydrostatic pressure.
In the simple uniaxial case 02 = 03 = 0 we see that a, reduces to cri.

After these preliminaries we may postulate as generalization of Eq. (11)

= -dt[G(a,) Si] F(a,) so i = 1,2,3 (19)

The irreversibility condition here takes the following form: The first term on
the right side of Eq. (19) shall be omitted whenever unloading takes place. This
is to be understood in such a way that if we unload from a value a, = a,' then
the first term of Eq. (19) shall be left out of consideration until, on reloading,
a, has again reached the value a/ .

Naturally, Eq. (19) shall reduce to Eq. (11) in the uniaxial case, say 02 =
= 0. This condition yields

G(a,) =
( -1

- —

	

2 ao 0o

F(a,) = -
31

	

2

(geri

a, o-,

The retention of the first term on the right side of Eq. (19) means taking
account of irrecoverable plastic slip with the use of a "finite theory,- thus
violating the requirement that a theory of metal plasticity should by nature be
" incremental.- It also neglects the Bauschinger effect and other anisotropy
effects of the flow. It neglects effect of anelasticity and of stress history. Its
justification lies in the fact that in most cases we use this term as a correction
term only, with the second term on the right side of Eq. (19) being the main
term corresponding to viscous flow. Should occasionally the first term on the
right side of Eq. (19) prevail over the second one, then in any case the ratio of
the principal stresses shall remain at least approximately constant during the
deformation.
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Generalization of Eq. (7) to multiaxial states of stress may, according to

Kachanov, he achieved by substituting for a the actual value of the maximum

principal stress a, ,,,,,x henceforth supposed to be a tension stress. The time to

rupture  lk  may then be determined from

(1? (a,111:1Xy dt = tk (22)

In this form the theory has been successfully applied by Kachano0 to cases of

homogeneous stress distribution—e.g., to creep rupture of cylindrical, thin-

walled tubes under internal pressure. Kachanov's hypothesis is supported by

experiments on thin-walled tubular specimens of low-alloy cast steel and rolled

copper in combined tension and torsion by A. E. Johnson and N. E. Frost.'

THEORIES OF CREEP RUPTURE BY

N. J. HOFF AND BY L. M. KACHANOV

Creep rupture is the more or less britt.le fracture that occurs at the end of the

tertiary stage if a test piece--e.g., of a structural steel is subjected to a constant

tensile load at elevated temperature, say above 400°C. As already indicated,

the physical background of this behavior may be complicated enough. Never-

theless, if for a creep rupture test, initial stress 011, is plotted against lifetime t*
on a log/log basis, curves of very much the same general appearance will be

obtained for a number of structural metals.

By way of example such typical curves are shown in Figs. 9 and 10, referring

to two low alloy steels tested at 500°C, taken from a paper by K. Richard."

Particularly in Fig. 10 the creep rupture curve is seen to be made up by two

essentially straight lines with a smooth connection between them. For small t*
the slope is small and the fracture ductile, for larger t* the slope is steeper and

the fracture more or less brittle.

The first conscious attempt towards a phenomenological theory of creep

rupture is due to N. J. Hoff (1953). He has given a full account of his results

before the ICAS First Congress in Madrid, 1958»
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Considering a test piece in uniaxial tension with constant load  P,  Hoff assumes
homogeneous conditions of stress and strain in a gage length  1  with cross section
A, the initial values of these quantities at  =  0 being 10 and Ao respectively.
Thus he obtains the condition of incompressibility in the form

A010 = Al  (23)

The creep rate will be

de1 dl1 dA
dt1 dt — A dt

(24)

The stress will be =  P/ A  and from Eq. (2) Hoff obtains, neglecting the effect
of primary creep

V = —

1 dA (P  
A dt c

(25)

Integration with satisfaction of the initial condition yields

n —= A 0" — .4"P

/
(26)

Thus the cross section will decrease from its initial value Jo to A = 0 in the
finite time  111*  (subscript H for Hoff), where

—
A Oncr: — 1 ( ac ytI/  — (27)

n an
nP"

The stress al will increase with time from its initial value am = P/ A0 according
to the equation

Aocrlo
— Grio[1 —  n(aio/ac )" C I"

A

1. —in (

int
= Cr•., —

III*

y

I eo
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Thus cri will become infinite when t approaches the value tll *.  This entails large
strains when approaching failure and would necessitate the use of a definition
for finite strain. Apart from the simple uniaxial case, now under consideration,
one should also take account of so-called "cross- terms in the constitutive
equation, e.g., in Eq. (5). However, when we are primarily interested in the
determination of the rupture time til*, large strains will occur only during the
latest small fraction of Ill *  and thus the secondary effects as measured by the
cross terms will influence  01*  but slightly.

Hoff's Eq. (27) represents a straight line with the slope 1/n in a log/log
diagram between ato and t II*. This straight line corresponds to the left portion
of the creep rupture curve of Fig. 10. The right part of this curve corresponds
to Kachanov's relation (6) and as the slope of this part is 1/v the general trend
of creep-rupture curves indicates the following relation between n and v

n > (29)

Kachanov has also given a theory8 for the smooth part connecting the two
straight portions of the creep rupture curve. He assumes creep according to
Eqs. (23) through (28) to operate simultaneously with deterioration according
to Eq. (7). Then inserting Eq. (28) into Eq. (7), he obtains

n — v ak

n  (crlo
)til*

E (1 — tRS/InS)"-PIn

(30)

where I K *  (subscript K for Kachanov) denotes that particular value of tR for
which rupture occurs. This naturally requires

*tK < in * (31)

otherwise ductile fracture would occur according to (27). From Eq. (30) we
obtain

I K* = 1,1* — [1 — n v  lk

n \ 0"10hf

which proves that the inequality (31) will hold, whenever

n — v ak y Ik
- -

—
(33)

<no in* 


Introducing the notation
11/n-r

- [ 	 (34)
(n — tkak'

we then have from Eq. (32)

*  —(cTe/cror — [ — (Tio)a- ] a/a-1
tK n kl 1 


ik = f "( 10 ) (i t

0 Crk
dt —

0.

(32)

(35)

valid for crio < a, in which case IR = 1K*. If on the other hand crio > a, we have
/if = tn* as before, because in that case we would obtain  1K5 > tH*  from Eq.
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(35). For small values of um, we see from Eq. (35) that tic* will behave asymp-
totically as um-% i.e., tic* will approach the straight line, Eq. (6), Fig. 11. The
stress ay) --= forms the boundary between ductile and brittle fracture.

Thus Kachanov's combined theory of ductile and brittle fracture is able to
represent the creep rupture curve of many structural metals in a large range
of stresses.

In the case of nonhomogeneous stress distribution—e.g., the case of creep
rupture of thick-walled cylindrical tubes under internal pressure--the problem
becomes much more complicated.

According to Kachanov," it is then necessary to distinguish two different
time periods t = 0 . . . ti e' and t = tR' . . . tR ", until the final failure occurs at
t = tR ". During the first period (0 ,tR') local deterioration takes place and local
failure begins at t tR' . A failure front will then be propagated through the
material during the second period  (tR',tR")  and have penetrated the structural
part in question at the time t = tR", when final failure occurs.

In the quoted paper Kachanov has made a series of beautiful applications of
his theory.

POSSIBLE IMPROVEMENTS OF KACHANOV'S THEORY
OF CREEP RUPTURE

If Kachanov's theory of combined ductile and brittle creep rupture as stated
in the previous chapter be compared more carefully with experimental results,
it will be seen that the slope of the ductile part of the curve as required by the
theory in many cases is far too large. This may be seen in Fig. 10, where Norton's
exponent n as calculated from the creep-rupture curve for a low-alloy steel at
500°C would amount to about 70, whereas the correct value would be of the
order of, say, 7.

Deviations between experiments and theory in the ductile region of the creep
rupture curve were noted already by Hoff." He makes certain attenlpts to
improve the theory by taking account of the ultimate rupture stress and the
primary creep as expressed with the "equation of state- suggested by A. Nadai.
Similar calculations have also been made recently by V. S. Namestnikov."

,* \ \ .
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\ \
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log t*

log

log y

Fig. 11.
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In these theories several new empirical constants are introduced and it should
be possible to obtain better agreement with experiments by giving these con-
stants proper values. However, these calculations are rather lengthy and the
expressions for lifetime thus arrived at are very cumbrous indeed and are not
easy to discuss.

Here shall now be made an attempt to take account of primary creep in the
form introduced with Eq. (11). This equation shall be substituted for Eq. (2).
Everything else remains unchanged. Instead of Eq. (25) we thus obtain

dA
-

P dA (P
= co

y

	

A A-2- dt °`

Integration with the initial condition .1 = :10 for t = 0 yields

A —
— no

a0-"' (A 0"-"° — An-'°) — n y t
a,

Putting as before 1,/i = c, P/ Ao = am  and assuming  A = 0 for the particular
value t = t,,* (subscript p for "primary-) we obtain

cro/cto(
t

d
p* 07c/aior [

	

1 -   (38)
n - no

for the time to ductile creep rupture. It is easily seen that the curve for t„* in a
log 'log plot falls below that of the straight line Eq. (27) for 1,1*.There is also a
tendency of the curve for 1,,*to have a smaller slope as required by experience
(see Figs. 9 an (l 10).

But it is also possible to modify Kachanov's combined theory in accordance
with Eq. (11). Then combining Eqs. (7) and (36) we obtain

dt "RA° dt dA= p f= U10 )  A
---- d A

0 A r ° f



where di/dA is  to be taken from Eq. (36) and where A = anio is the particular
value of .1 for which brittle fracture will occur. This value corresponds to

= K „* as computed from Eq. (37). We thus obtain the following parametric
representation of tKr* as a function of ay) by means of the parameter  UR

,0

(
crio
— A 6' )'.1) 1

/ o)al P--

	

0 _, - (0.10.  Cr  , 	 (1 _ an n-no-v)}

al  alo \n - v ' n - no-v



(ff,/aior )t - 	 - aRn - n - no ( cro (1 - aRn-'1}
(41)

n

Equations (40) and (41) are reduced to Eqs. (30) and (35) in the limiting case
a,  = . Transition from ductile fracture according to Eq. (38) to brittle fracture
according to Eqs. (40) and (41) will now occur whenever




t < tp* (42)
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i.e., from Eqs. (40) and (41) as soon as

n au) )no
aft — ar° > 0

no ao

Or

< aRao
—

n
no)

no
(43)

On the other hand, from Eqs. (34) and (40) we have

	

- , n — 	 ( )4° (1 _ anR-oo- }I/n-v
= —

Cro

and from Eq. (43) we must have

1 > >
aft ao (n —

) 1 no

no

Inserting the minimum value of aR according to Eq. (45) into Eq. (44), we
obtain a condition for a as a function of am = ,„ the new boundary between
ductile and brittle fracture, riz.,

= ap) (a ) n 


ao n — no

(-7

n )n—no—vinoT —(1In—y)n — V
—

n — no — v (To 0)3 n — no

(46)

In the limiting case ao we are reduced to ar„ = a as before in Fig. 11. For

ao finite this boundary will correspond to a slightly smaller value ap < a. For

al() < ap the rupture curve will be given by Eqs. (40) and (41) (brittle fracture),

otherwise by Eq. (38) (ductile fracture). The asymptotic behavior of IK„* for

small values of ao will be seen from Eqs. (41) and (44). Equation (44) yields




1 _ ai0
aR [

(
(aio/a )n_ " + •

n--v 11/n—v

+ • • • = 1 —
1

n —

valid for small values of alo. Inserting this in Eq. (41), we obtain

(ac/aio )" ) 1 

KJ,* = n t1 — [1 — n _ (Œlo/Cr— )4— + • •

•
+ • • • (

a:
± •) (47)

(n — v) alovEr n-v

and this equation proves that IK,,* will behave asymptotically as alo—r as before.

The general form of the rupture curve tR,,* in the new combined theory will be
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seen in Fig. H. It offers better agreement with experiments on creep rupture
than Kachanov's original theory. The new combined theory has been success-
fully applied to the creep rupture of thin-walled cylindrical tubes under internal
pressure by the present author.17

An interesting observation may be made in connection with Eq. (38) for
ductile creep rupture. In the case when no approaches n we see that f „*would
become infinite. As this is obviously against experience one may conclude

no < n (48)

In fact, this relation is in general agreement with the results of calculations of
the author." based upon measurements by A. E. Johnson2° in cases of multiaxial
stresses. Shouhl in some special case no approach the limiting case no = n, it
follows from Eq. (38) that t ,,* = , i.e., ductile fracture will not occur for such
material. An example of such material is 0.17 percent cast steel at 450°C."
Rupture time would then be determined from

fR _ (a, y 1 [i _n c— log adio,
cro

(49)

where an is given by

= —
(no n 1 

cik )

( gin n — v 1 — aR1

\ co / aR"
n

— an
o-lo n — v

(50)

We will return to the case n = no for some comments in the following section.

DEFORMATION UNDER CONSTANT SPEED

In this concluding section we shall take a wider view of the phenomenon of
creep rupture. We shall study the rupture stress in its dependence on strain rate
in a wide range of this quantity.

Let us consider the ordinary tension test. A cylindrical test specimen is
clamped between two grips and pulled apart by a central load. The two grips

loo  o-10

log Fr

log Cri,

log t*

Fig.
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move with constant relative velocity u in the direction of the pull and the load,
which should be carefully centered with respect to the specimen is adjusted so
as to correspond to the velocity u at any moment.

If the gage length was 10 at t = 0 it will be

1 = lo ut = /0(1 ut//o) = /0(1 + rot) (51)

at the arbitrary moment 1, neglecting deformation of those parts of the test
specimen that are outside the gage length. In Eq. (51) ro = n/lo is the strain
rate at t = O. For t > 0, the strain rate will decrease and amount to

1 dl 	 vo 

v =

1 dt1 + rot
(52)

The total strain

e= fir dt = log(1 + rot) (53)

thus giving rise automatically to the "natural strain- (1'. Ludwik3).
Combining Eqs. (52) and (11), we obtain

de ( vo-1(Gc.o)
dt = 1 + rot —

cr

(Z)

if du > 0(34)

da  n
if(55)

dt

In this form we shall try to represent material behavior in a very large range
of strain rates ro. The stress g is supposed to be zero at time t = O. Qualitatively,
the time dependence of the quantities  dE/dt, E, and a may he seen in Fig. 13.

dE
tit

Fig. 13.
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The only restrictiont for such representation should be that the time ti for the
stress to reach its maximum al shall be large as compared with the time for
longitudinal stress waves to be propagated through the gage length, i.e., we
must have

/0/co << li (56)

where co is the wave velocity. The inequality, Eq. (56), excludes shock phenom-
ena, such as stress waves and their interference, but not creep or rupture
according to Eq. (7). The combination of Eqs. (54) or (55) with the rupture
condition, Eq. (7), presents us with an intricate integration problem. I shall not
bore you by giving any details, all the more as analytical solutions are possible
only in special cases. It may suffice to show some limiting properties of the
solutions of our equations.

In principle the rupture time fn may come out greater or smaller than Ii. In
most practical cases, as pointed out by Kachanov, the quantity O11 = r0111. which
coincides with the engineering "elongation,- seldom exceeds 30 percent and is
usually much less than so, irrespective of the value of ro. This greatly simplifies
the calculations, as we may develop Eq. (33) in power series. Using the notation
-eot = 0, we obtain

0 2 03
= — -I- —3 •

and here we need retain at most three terms of the development. This would
then still leave us with an accuracy of better than 3 percent in the determination
of e. Introducing dimensionless quantities

1  =(ao)" crk
—

— = 12, tkvo =
(To Vo 0", 00

we may then write instead of Eqs. (34), (35), and (7)

d

+

11I,'  if

 

if < 0




R

o
= f d0 (61)

where Ox = 101k is the engineering elongation, introduced above.

t Also, naturally, other parameters such as temperature must he kept constant.




1 + 0
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The order of magnitude of the dimensionless quantities Q and  0  may be judged,
utilizing Eqs. (8), (9), and (10) above, viz.,

1-7
Q -

10



(2.10-3)n/n. VO  0 c7

0 = 105(2 • 10-5)"° vo (0-cB(5))'
0-0 .2

Table 1 shows some typical numerical values of Q and O.

(A) THE CASE OF LOW VELOCITY

This case has been treated by Kachanov» He neglects influence of primary
creep, which is the same as putting  ti  = 0. He thus may use Eq. (60) for the
determination of the stress and obtains

r = srlin
(1 69-lin (63)

or introduced into Eq. (61)

= 52-v/fi f  (1 + 6)-"in  ch, =
n - [ (1 + 6R) n- " - 11 (64)

Assuming tYR to be small he then may solve for  o9-R and finally arrives at

v
=  OQ  =  tk  -

crk)
von-"

cre

which is, of course, independent of O. Kachanov states that experiments by
A. V. Staniukovich are in general agreement with Eq. (65) as regards dependence
on vo. Figure 14, reproduced from Ref. 19, however shows certain discrepancies.
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Partly these discrepancies are due to the fact that influence of local contraction
may have been important, particularly for higher values of 'OR.Other discrep-
ancies may be accounted for utilizing the full equation (59). In his paper,
Kachanov" gives limits for the ratio  r/n, riz.,

0.62 < -P- < 1 (66)

and suggests 0.7 as a fair mean value for the materials tested. A more critical
discussion of Staniukovich's measurements is not possible as no details are given
in his paper.

The table above shows the quantity 61, as a function of vo in three typical
examples. Number 1'2 would correspond to the case of Fig. 10 i.e., a brittle
low-alloy steel. Number 13 or 14 would correspond to the 0.17 percent ('-steel
mentioned above.

The rupture stress would be the highest stress encountered during the test--
i.e., in nondimensional form the value of that occurs for t9- = 0, viz.,

= 1 /n Crc 1 /n
= — • VO (67)

CO

(B) THE CASE OF HIGH VELOCITY

We shall assume in to be smaller than f, i.e., rupture is supposed to occur
before stress has reached its maximum as determined by creep action. In such
case the dimensionless stress is determined by Eq. (59) only and we may
write this equation in integral form satisfying the initial condition

(68)

If in this equation the first tern/ will dominate, we may find by iteration the
development

= en" {1
5no + 3 2

2no 24/202

Stno6n/no[1 +  6  (2n02n2
n + no2no \ n + 2no

(69)

Inserting this, in Eq. (61) we obtain

0 = i
nOORP+n'in° i l v no ± P 
— /YR ± • • •

no ± v 2n0 2n0 ± v


  imS2(no ± p) OR'Iri [
1 + • • •if (70)

n + no + no n
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For small 2YRthis equation may be solved in the form

= [  (lio Oin./v-t-n„
L no

+ no— [ik (œcrk) (n no )]Vo (71)

and with the smile degree of approximation we obtain the dimensionless rupture
stress

1/80 4-v
, An oP)1

=(
akvoLk

uo no
(72)

Equations (71) and (72) have limited validity. It would for example not be
possible to use them in the case of the steel shown in Fig. 10 i.e., about Number
1t2 of the table. In this case 12 would be too large. In this case Eq. (65) should
offer quite satisfactory agreement.

In the case of the carbon steel represented by Number 13 in the table, it may
be employed with advantage but for the smallest value of ro.

It is of course difficult to make experiments to check the above theories over
a large range of strain rates. I have only mentioned those of Staniukovich. In
addition to these the only experiments worth mentioning, that I know of, are
those of A. Nadai and M. J. Manjoine.21 For various reasons they hardly permit
comparison with those of Staniukovich. This is mainly due to the fact that
they, generally speaking, work in a higher range of strain rates than Staniukovich
and only overlap occasionally in this respect. Further, Nadai and Manjoine
give results principally in terms of ultimate stress and Staniukovich in terms of
elongation. The only materials that are common to both investigations "mild
steel- and "stainless steel- are not sufficiently specified by Nadai and Manjoine
as to permit a detailed comparison. The number of readings of these investigators
is small and the scatter too large, naturally as a consequence of experimental
difficulties. Still the general trend is the same as in Staniukovich's paper (see
Figs. 14 and 15). When replotted to double logarithmic scale, Nadai and Man-
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joine's values fall on straight lines just as Staniukovich's. Also, the global appear-
ance of the stress as function of time with an early maximum as expressed in
our Fig. 13 is generally in agreement with their measurements. Figure 16 (upper
part) shows the stress variation with time as recorded by Nadai and Manjoine
for "mild steel." The lower diagram shows for comparison result of exact
integration of Eqs. (59) through (61) in the case no = n = .5, corresponding to
a 0.17 percent cast C-steel at 455°C. The early stress maximum found in the
experiments, does not agree with theory in this case. I will finish by pointing to
this field for future research.

A further treatment of the system of Eqs. (59) through (61) should be per-
formed in this connection, permitting accurate comparison while using realistic
values of the material constants involved. In the general case integration has to
be performed numerically. The special case n = no, as just mentioned, permits
analytical treatment for arbitrary value of a Results of such calculations shall
be published elsewhere.

LIST OF SYMBOLS

= time
t* = rupture time, general;  tR =  rupture time, according to

Kachanov
tk = rupture time under constant stress  crk,  according to

Kachanov

MILD STEEL (NADAL MANJOINE)

AT ROOM TEMPERATURE; STRAIN AT 700°C; STRAIN RATE, 300

RATE, 300 PER SEC PER SEC

0.17C - CAST STEEL (THEORY)

AT 455°C, STRAIN RATE, 10-5

PER HOUR

o0.2 16.5 KILOGRAMMES PER SO. MM

°cl 5.5 KILOGRAMMES PER SO. MM

crI5B) 4.0 KILOGRAMMES PER SO. MM

I tR

Fig.  16.
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1,1*  = rupture time, according to Hoff (ductile fracture)

Ix* = rupture time, according to Kachanov's theory of com-
bined ductile and brittle fracture

1„*  = rupture time for ductile fracture, when taking primary
creep into account

I1 V* =  rupture time for combined ductile and brittle fracture,
when taking primary creep into account

t,  = time to stress maximum in test with constant speed

= strain, plastic
( 0) = value of  E  for  1 = (1

a =  stress

€1. €2. E3 = principal strains

= principal stresses; also a, =  maximum stress in test
with constant speed

(Tin = value of cr, for  t  = 0

an, a0• 2 proof stress

ri Uri limiting creep stress

cr,n(5) = rupture stress for 105  h  life

ç. = effective stress

a, ar  = boundary stress between ductile and brittle creep
rupture

=  stress on supporting area

il =  exponent of Norton's power law

v, = constants of Kachanov's theory

- .1 = sectional area of test piece in uniaxial tension

.10 = value of .1 for  t = (1
1 =  gage length

lu  = value of I for  t  = 0

.1r = supporting area

D = — Ar)//1 = damage factor

=  strain rate, creep rate

r2,  r3 =  principal creep rates

ro = value of  r  at  t  = 0

total load of test specimen in uniaxial tension

a = .1/.10 = parameter

=  value of a at rupture

= rot

Ote  = rot!?

=  a/o-0

9., û -= dimensionless quantities defined by Eq. (58)

F, G  functions
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DISCUSSION

Author: F. K. G. Odqvist

Discussor: H. P. van Leeuwen, National Aero- and Astronautical Research Institute

I would like to start by congratulating Professor Odqvist on his very fine paper giving

us a clear picture of the creep rupture problem and the possible way of solving it. The

comment I would like to make is that in case of ductile creep (Hoff's equations), rupture

is assumed to occur when the cross sectional area A reduces to zero.
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Likewise Kachanov assumes brittle creep rupture to occur when the residual area A,

(the effective load bearing area in the damage expression  1) = (A —  Ar)/A) reduces to
zero.

In both cases the true stress goes to infinity which. I think, is a rather unrealistic

situation. I wonder whether the theory could be improved somewhat by assuming rupture

to occur at a finite value of the cross-sectional area A or A,, which then should be related

to the true ultimate tensile strength of the material at the test temperature, taking into

account, if necessary, the embrittling effect of time-at-temperature.

As regards Kachanov's damage concept I would like to indicate the similarity with

Machlin's approach published in the Journal nf Metals some years ago, under the title
"Creep Rupture by Vacancy Condensation.- Machlin assumes vacancies to be produced

by dislocation interaction. The vacancies coalesce into voids, reducing the actual load

bearing area, a process leading to rupture ultimately.

Now Machlin was able to calculate the elongation at rupture as a function of the

metal structure and shows that the product of (minimum) creep rate and rupture time

would tend to be a constant.

Checking Machlin's rule with actual test data shows that it holds for pure metals

having a stable structure, whereas with cold-deformed and precipitation hardened

materials a clear cut dependence of the above product on temperature and time is
observed.

Yet I think his approach is valuable because it will enable rupture life to be calculated

as the necessary time to reach a certain critical elongation.

Author: F. K. G. Odqvist

Diseussor: N. J. Hoff, Stanford University

I would like to congratulate the author on his comprehensive lecture. Since it seems

to be customary at this Congress to make long-range predictions. I would like to predict
that this lecture will become the definitive paper on creep rupture until and unless

solid-state physicists and metallurgists put their findings in a form suitable for analytical

treatment by the methods of continuum mechanics. I wonder how the author feels about
the generality of the damage function proposed by Professor Kachanov. It seems to me

that its validity might be restricted to tension tests; it certainly cannot be valid for

hydrostatic compression because cracks cannot form in the same way under this loading.

I would like to close my remarks by expressing my satisfaction with the care with

which Professor Odqvist defined the problems he treated. In the past all too often the

boundary conditions of a problem were stated by the analyst in a manlier that was

convenient for solution, which the experimentalist built his test equipment solely for the

convenience of testing. Naturally good agreement between theory and experiment can

be expected only if the analyst defines the problem ill a manner suitable for experimental

verification; this was fully accomplished by Professor Odqvist.
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Author's reply to discussion:

The improvement proposed by Mr. van Leenwen, taking account of a finite

value of the cross-sectional area at rupture has in fact been suggested by professor

Hoff in his quoted paper. It has the obvious disadvantage of introducing at least

one more empirical constant into the theory and will of course render the formulae

more complicated.

The author is grateful for reference to professor Machlin's paper and shall have

to study his approach more closely.

Professor Hoff raises the question about the validity of Kachanov's theory in

the case of superimposed hydrostatic pressure. In fact Kachanov assumes the

presence of at least one tensile principal stress. It should be possible to construct

a crucial test for proof or disproof of this hypothesis in the following way. If a

thin-walled tube is subject to torsion in the presence of hydrostatic pressure the

maximum tensile principal stress could be lowered in an arbitrary way. Extrapo-

lation to zero maximum principal stress would enable desired conclusion.




